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Output measured by performance.
Internal units match unknown concepts.

AlexNet 2012 VGG-16 2014
5 conv layers 13 conv layers

Are Individual Units Meaningful?

1. Dissect 256 units of Alexnet conv5 trained on places [ ]

Resnet-152 2015
>150 conv layers.

GoogleNet 2014
21 conv layers

What is learned inside?
How do internals compare?

Top ranked concept
and score are assigned
to each unit.

Our contributions:

Error: 15.3%

1. A method to go from visualization
to quantified interpretations.

Top activations of Iop IoU units
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Error: 8.5%

2. Comparisons of interpretability of |-
a range of different representations.
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100 more layers
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1. Define a broad dictionary of candidate concepts.
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72 concepts with loU > 0.04

wrinkled (texture) _
[,

Broden Dataset 2. Dissect 256 other projections of the same Alexnet conv5 units

>
D
>
>
B
D
D
B
>
>
=D
>
>
>
B
>
>
B
B
B
>

cloncomn
ADE20K zh t al, CVPR ‘17 wk . . . . . L .
e e . Py Representation after random basis-change has identical discriminative power
Pascal Context ~ Mottaghi et al, CVPR ‘14
Pascal Part Chen et al, CVPR ‘14 - . .
Open Surfaces  Bell et al, SIGGRAPH ‘14 Error: 4.4% K]
8
Desc Textures Cimpoi et al, CVPR ‘14 = Top ranked concept
5
Colors generated g 58 and score are assigned
Total = 63,305 images 2 to each unit.
T

1,197 concepts

Top activations of top loU units under changed basis

ball pit dotted honeycombed 18 concepts with loU > 0.04

cconv5 unit 207 (scene) 10U 0.09 conv5 unit 251 (texture) loU 0.09 conv5 unit 130 (textur loU 0.
828T 8
= 883% 5
o - 8- 5 %
> o-" E 2
wpp £ H

sprinkled II
conv5 unit 52 (1ex|ure loU 0.08 conv5 unit 108 aﬂ} loU 0.07 conv5 unit 39 IexlurE) 0 b:ﬁ&:& Y vméc"\@{’g;g?@b« \eba'i@é
S‘& FEEIRES
o S ey

Units under a changed basis are less interpretable

3. Measure segmentation quality and match units to concepts. 3. Verify on other projections
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loU of the best-matched concepts quantify interpretability Individual units in a learned basis match meaningful concepts
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Comparing Interpretable Units

1. Across Layers (Alexnet trained on places ~ @)
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Ll concepts at higher layers
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3. Across Supervisions and Training Sets (Alexnet conv5)
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Deeper networks represent
more high-level concepts
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Representations can be compared by interpretability

* Indicates equal contribution

Network Dissection: Quantifying Interpretability of Deep Visual Representations

CSAIL

Emergence of Interpretability

1. When Training from Scratch
Early training finds concepts; late training improves them.

AlexNet onplaces ~® Network performance during training
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Interpretability of a single unit during training
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2. When Fine-Tuning

Representations switch units to new concepts during fine-tuning.

striped

IMAGE

places=e
0

102 10*
Trainina iteration

IMAGE places=e
0

10% 10*
Training iteration

Papers, data, and code at http://netdissect.csail.mit.edu
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